Using Helix

Login

There is one gateway that redirects to any of the login nodes in a load-balanced way.

Hostname

Node type

helix.bwservices.uni-heidelberg.de

login to one of the two Helix login nodes

Host key fingerprint:

Algorithm

Fingerprint (SHA256)

RSA

SHA256:mFBTLtf0a4xSyrMh6x1A8Ah8FzAD0ZRHCo0mkivrYsU

ECDSA

SHA256:yMNcTOEsgtUoglxiJSaXtqx+pJPo3Wc8zxdG0aZeNdA

ED25519

SHA256:3+Kq1tHmhjOkuAYsDttaacGXNasWe5JsrwgSWhJcGdY

Your username for the cluster will be your ICP ID with an st_ prefix. For example, if your ID is ac123456, then your Helix username will be st_ac123456.

More details can be found in Helix/Login.

Building dependencies

Boost

# last update: July 2025
module load compiler/gnu/14.1 mpi/openmpi/4.1
mkdir boost-build
cd boost-build
BOOST_VERSION=1.88.0
BOOST_DOMAIN="https://archives.boost.io"
BOOST_ROOT="${HOME}/bin/boost_mpi_${BOOST_VERSION//./_}"
mkdir -p "${BOOST_ROOT}"
curl -sL "${BOOST_DOMAIN}/release/${BOOST_VERSION}/source/boost_${BOOST_VERSION//./_}.tar.bz2" | tar xj
cd "boost_${BOOST_VERSION//./_}"
echo 'using mpi ;' > tools/build/src/user-config.jam
./bootstrap.sh --with-libraries=filesystem,system,mpi,serialization,test
./b2 -j 4 install --prefix="${BOOST_ROOT}"
cd "${HOME}"
rm -rf boost-build

FFTW

# last update: July 2025
module load compiler/gnu/14.1 mpi/openmpi/4.1
mkdir fftw-build
cd fftw-build
FFTW3_VERSION=3.3.10
FFTW3_ROOT="${HOME}/bin/fftw_${FFTW3_VERSION//./_}"
curl -sL "https://www.fftw.org/fftw-${FFTW3_VERSION}.tar.gz" | tar xz
cd "fftw-${FFTW3_VERSION}"
for floating_point in "" "--enable-float"; do
  ./configure --enable-shared --enable-mpi --enable-threads --enable-openmp \
    --disable-fortran --enable-avx --prefix="${FFTW3_ROOT}" ${floating_point}
  make -j 10
  make install
  make clean
done

CUDA

# last update: September 2025
module load compiler/gnu/14.1 devel/cuda/12.9
export CLUSTER_CUDA_ROOT="${HOME}/bin/cuda_${CUDA_VERSION//./_}"
mkdir -p "${CLUSTER_CUDA_ROOT}/lib"
ln -s "${CUDA_HOME}/targets/x86_64-linux/lib/stubs/libcuda.so" "${CLUSTER_CUDA_ROOT}/lib/libcuda.so"
ln -s "${CUDA_HOME}/targets/x86_64-linux/lib/stubs/libcuda.so" "${CLUSTER_CUDA_ROOT}/lib/libcuda.so.1"

Building software

ESPResSo

Release 4.2:

# last update: August 2025
module load compiler/gnu/14.1 mpi/openmpi/4.1 devel/python/3.13.1
CLUSTER_FFTW3_VERSION=3.3.10
CLUSTER_BOOST_VERSION=1.88.0
export BOOST_ROOT="${HOME}/bin/boost_mpi_${CLUSTER_BOOST_VERSION//./_}"
export FFTW3_ROOT="${HOME}/bin/fftw_${CLUSTER_FFTW3_VERSION//./_}"
export CLUSTER_CUDA_ROOT="${HOME}/bin/cuda_${CUDA_VERSION//./_}"
export LD_LIBRARY_PATH="${BOOST_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${FFTW3_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${CLUSTER_CUDA_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
python3 -m venv "${HOME}/venv"
source "${HOME}/venv/bin/activate"

git clone --recursive --branch 4.2 --origin upstream \
    https://github.com/espressomd/espresso.git espresso-4.2
cd espresso-4.2
python3 -m pip install 'cython>=3.0.0,<3.0.10'
python3 -m pip install -c "requirements.txt" setuptools numpy scipy vtk
mkdir build
cd build
cp ../maintainer/configs/maxset.hpp myconfig.hpp
sed -i "/ADDITIONAL_CHECKS/d" myconfig.hpp
cmake .. -D CMAKE_BUILD_TYPE=Release -D WITH_CUDA=OFF -D WITH_CCACHE=OFF -D WITH_SCAFACOS=OFF -D WITH_HDF5=OFF
make -j 4

Release 5.0-dev:

# last update: September 2025
module load compiler/gnu/14.1 mpi/openmpi/4.1 devel/cuda/12.9 devel/python/3.13.1 lib/hdf5/1.14.6-gnu-14.1-openmpi-4.1
CLUSTER_FFTW3_VERSION=3.3.10
CLUSTER_BOOST_VERSION=1.88.0
export BOOST_ROOT="${HOME}/bin/boost_mpi_${CLUSTER_BOOST_VERSION//./_}"
export FFTW3_ROOT="${HOME}/bin/fftw_${CLUSTER_FFTW3_VERSION//./_}"
export CLUSTER_CUDA_ROOT="${HOME}/bin/cuda_${CUDA_VERSION//./_}"
export LD_LIBRARY_PATH="${BOOST_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${FFTW3_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${CLUSTER_CUDA_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
python3 -m venv "${HOME}/venv"
source "${HOME}/venv/bin/activate"

git clone --recursive --branch python --origin upstream \
    https://github.com/espressomd/espresso.git espresso-5.0-dev
cd espresso-5.0-dev
python3 -m pip install -c "requirements.txt" cython setuptools numpy scipy vtk h5py "cmake>=4.1"
mkdir build
cd build
cp ../maintainer/configs/maxset.hpp myconfig.hpp
sed -i "/ADDITIONAL_CHECKS/d" myconfig.hpp
cmake .. -D CUDAToolkit_ROOT="${CUDA_HOME}" -D FFTW_ROOT="${FFTW3_ROOT}" \
    -D CMAKE_BUILD_TYPE=Release -D ESPRESSO_BUILD_WITH_CUDA=ON -D CMAKE_CUDA_ARCHITECTURES="86;89" \
    -D ESPRESSO_BUILD_WITH_CCACHE=OFF -D ESPRESSO_BUILD_WITH_WALBERLA=ON \
    -D ESPRESSO_BUILD_WITH_SCAFACOS=OFF -D ESPRESSO_BUILD_WITH_HDF5=ON \
    -D ESPRESSO_BUILD_WITH_SHARED_MEMORY_PARALLELISM=OFF
make -j 10

Submitting jobs

To show which nodes are idle:

sinfo_t_idle

Batch command:

sbatch job.sh

Job script:

#!/bin/bash
#SBATCH --partition=cpu-single
#SBATCH --job-name=test
#SBATCH --ntasks=4
#SBATCH --ntasks-per-core=1
#SBATCH --time=00:10:00
#SBATCH --output %j.stdout
#SBATCH --error  %j.stderr

# last update: September 2025
module load compiler/gnu/14.1 \
            mpi/openmpi/4.1 \
            devel/cuda/12.9 \
            devel/python/3.13.1 \
            lib/hdf5/1.14.6-gnu-14.1-openmpi-4.1
CLUSTER_FFTW3_VERSION=3.3.10
CLUSTER_BOOST_VERSION=1.88.0
export BOOST_ROOT="${HOME}/bin/boost_mpi_${CLUSTER_BOOST_VERSION//./_}"
export FFTW3_ROOT="${HOME}/bin/fftw_${CLUSTER_FFTW3_VERSION//./_}"
export CLUSTER_CUDA_ROOT="${HOME}/bin/cuda_${CUDA_VERSION//./_}"
export LD_LIBRARY_PATH="${BOOST_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${FFTW3_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
export LD_LIBRARY_PATH="${CLUSTER_CUDA_ROOT}/lib${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH}"
source "${HOME}/venv/bin/activate"

mpiexec --bind-to core --map-by core --report-bindings ./pypresso ../maintainer/benchmarks/lb.py

The desired partition needs to be specified via #SBATCH --partition command, without which your job will not be allocated any resources. Helix has following partitions available:

Partition

Default Configuration

Limit

devel

ntasks=1, time=00:10:00, mem-per-cpu=2gb

nodes=2, time=00:30:00

cpu-single

ntasks=1, time=00:30:00, mem-per-cpu=2gb

nodes=1, time=120:00:00

gpu-single

ntasks=1, time=00:30:00, mem-per-cpu=2gb

nodes=1, time=120:00:00

cpu-multi

nodes=2, time=00:30:00

nodes=32, time=48:00:00

gpu-multi

nodes=2, time=00:30:00

nodes=8, time=48:00:00

Source:

scontrol show partition

The documentation recommends using the MPI-specific launcher, i.e. mpiexec or mpirun for OpenMPI, instead of SLURM’s srun. The number of processes and node information is automatically passed to the launcher.

When using srun instead of the MPI-specific launcher, if the job script loads python via module load, it is necessary to preload the SLURM shared objects, like so:

LD_PRELOAD=/usr/lib64/slurm/libslurmfull.so \
    sbatch --partition=devel --nodes=2 --ntasks-per-node=2 job.sh

Otherwise, the following fatal error is triggered:

python3: error: plugin_load_from_file: dlopen(/usr/lib64/slurm/auth_munge.so): /usr/lib64/slurm/auth_munge.so: undefined symbol: slurm_conf
python3: error: Couldn't load specified plugin name for auth/munge: Dlopen of plugin file failed
python3: error: cannot create auth context for auth/munge
python3: fatal: failed to initialize auth plugin

Refer to Helix/Slurm for more details on submitting job scripts on Helix.